
   

  

   

   
 

   

   

 

   

   166 Int. J. Learning Technology, Vol. 5, No. 2, 2010    
 

   Copyright © 2010 Inderscience Enterprises Ltd. 
 
 

   

   
 

   

   

 

   

       
 

Looking inside the black box: assessing model-based 
learning and inquiry in BioLogica™ 

Barbara C. Buckley* 
WestEd, 
400 Seaport Court, Suite 222, 
Redwood City, CA 94063, USA 
E-mail: bbuckle@wested.org 
*Corresponding author 

Janice D. Gobert 
Social Sciences and Policy Studies Dept., 
Worcester Polytechnic Institute, Atwater Kent Labs, 
Worcester, MA 01609 USA 
E-mail: jgobert@wpi.edu 

Paul Horwitz 
The Concord Consortium, 
25 Love Lane, 
Concord, MA 01742, USA 
E-mail: phorwitz@concord.org 

Laura M. O’Dwyer 
Boston College, 
Lynch School of Education, 
Campion Hall, Room 336E, 
Newton, MA 02467, USA 
E-mail: odwyerl@bc.edu 

Abstract: The Modeling Across the Curriculum Project (MAC; IERI  
# 0115699, Oct 2001–2006) used real-time assessments to facilitate student 
learning and model-based inquiry among high school students. We developed 
technology, materials, and processes that enabled us to monitor and respond to 
students’ actions. MAC learning activities engage students in a progressive 
model-building approach (Gobert, 2008; White and Frederiksen, 1990). 
Formative assessments were seamlessly embedded in scaffolding designed to 
guide model-based learning and inquiry. Because instruction and assessment 
were integrated, we were able to measure model-based inquiry skills in situ, 
thus circumventing the problem of assessing inquiry separate from its context 
(Mislevy et al., 2002). After identifying useful log file data and developing 
algorithms for analysing that data on a large scale, we identified productive 
inquiry strategies that correlated with learning gains. Our findings have 
immediate applicability to the design of tasks intended to elicit and support rich 
inquiry learning. 
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1 Introduction 

With the enactment of the No Child Left Behind Act of 2001 and the Education Science 
Reform Act of 2002 (Public Law 107–110), the current level of accountability in 
education demands evidence-based research and higher levels of performance for 
students at all skill levels. This makes it critical to be able to assess students’ learning 
reliably, (Fadel et al., 2007) and places a particularly high value on timely formative 
assessments that can assess students’ understanding and thereby help produce the desired 
learning gains. In science education, this means being able to assess not only students’ 
content knowledge, but also their model-based inquiry skills since these will enable them 
to reason about science content and will support future science learning (Gobert et al., 
2007a). While important progress has been made on assessing students’ content 
knowledge (National Research Council, 2002a), the assessment of process skills such as 
inquiry model-based inquiry, equally important for scientific literacy (Perkins, 1986), has 
lagged. Inquiry skills are considered an important component of scientific literacy 
because it is through these skills that students acquire new knowledge and are able to 
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transfer their knowledge to unfamiliar domains (National Research Council, 1999, 2000, 
2000b; Gobert et al., 2007b). 

Despite the widely acknowledged need for inquiry at all levels of the science 
curriculum (National Research Council (US), 1996), very few assessments exist for 
measuring or quantifying inquiry. Existing large-scale assessments fail to address inquiry 
skills (Quellmalz and Pelligrino, 2009). The situation is further complicated by the fact 
that it is difficult to separate inquiry from context. Inquiry skills developed in rich 
scientific contexts must be assessed within the scientific domain and context in which 
they are embedded (Mislevy et al., 2002). Like many others, we have found that 
traditional assessments fail to capture either the complex understanding or inquiry skills 
needed to conduct and learn from inquiry (Buckley et al., 2002; Ayala et al., 2002; 
Shavelson et al., 2002). Given the current emphasis on accountability, the need for and 
importance of assessing inquiry skills in situ has important ramifications for students, 
teachers, schools, and policy makers as well as for science education reform efforts. 

2 Modeling Across the Curriculum (MAC) project 

This paper describes the efforts of the IERI-funded project MAC to create  
technology-enhanced assessments grounded in a theory of model-based learning 
(Buckley, 1992, 2000; Gobert and Buckley, 2000), embedded in computer-based learning 
activities guided by model-based scaffolding (Buckley, 2000; Buckley et al., 2004; 
Gobert and Buckley, 2000), and enabled by Pedagogica™ (Horwitz and Burke, 2002). 
The experimentation with models demanded of students in MAC learning activities is a 
task much more analogous to real-world scientific methods than the act of answering a 
collection of unrelated multiple-choice questions. The inferences we make by analysing 
the log files automatically generated while students perform model-based inquiry tasks 
produce insightful and rigorous formative assessments that can guide learning without 
disrupting it. 

The MAC project explored the potential of a powerful new approach to instruction, 
assessment, and educational research: one that combined the collection of extremely fine-
grained student performance data with virtually unlimited scalability. We conducted this 
work in three different scientific domains: genetics, gas laws, and Newtonian mechanics. 
We offered students problem-solving activities supported by manipulable computer 
models linked to context-sensitive scaffolding. We then logged their actions as they 
attempted to solve the problems. The resulting log files provided a wealth of data bearing 
on the students’ content learning as well as their inquiry skills and their ability to reason 
with models within these three different scientific domains. In the interest of coherence 
this paper focuses on just one domain, Genetics, as implemented in BioLogica™. 

The central technological achievement of the MAC project was the development of 
hypermodels – manipulable computer models linked to text, scaffolding, and formative 
assessments. Students’ interactions with these hypermodels were monitored and used to 
provide immediate tailored feedback to the students. At the termination of each computer 
session, data in the form of XML-tagged log files were encrypted and uploaded to a 
central server where they were decrypted, parsed, and used to populate a database. We 
implemented a set of data-mining tools and used them to analyse the logged data and to 
produce classroom-level reports for teachers and to generate input for a standard statistics 
package. With multiple points of redundancy between client and server software, the 
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MAC technology comprised a robust, distributed computing environment designed  
ab initio for scalability and adaptable to the delivery of different kinds of educational 
applications and assessments. 

3 Theoretical framework: model-based learning 

The MAC project organised research, learning activities, and assessment around  
model-based learning (Buckley and Boulter, 2000; Clement, 1989; Gobert and Buckley, 
2000; Gobert and Clement, 1999), a theory of science learning that integrates basic 
research in cognitive psychology and science education. 

Figure 1 Theoretical framework: model-based learning and reasoning in science 

 

The tenets of model-based learning are based on the hypothesis that understanding 
requires the construction of mental models of the phenomena under study, and that all 
subsequent problem-solving, inference making, or reasoning are done by ‘running’ and 
manipulating these mental models (Johnson-Laird, 1983). We view mental models as 
internal, cognitive representations used in reasoning of many kinds (Brewer, 1987; Rouse 
and Morris, 1986). As shown in Figure 1, mental models, like prior knowledge, influence 
our perceptions of phenomena and our understanding of information. Interactions with 
phenomena, representations, and tasks, in turn, influence our mental models (Gentner and 
Stevens, 1983; Johnson-Laird, 1983). Thus, we define model-based learning as a 
dynamic, recursive process of learning by constructing mental models of the phenomenon 
under study. It involves the formation, testing, and subsequent reinforcement, revision, or 
rejection of those mental models (Buckley et al., 2002; Gobert and Buckley, 2000). This 
is analogous to hypothesis development and testing seen among scientists (Clement, 
1989) and therefore, we argue the reasoning needed in inquiry. These higher order  



   

 

   

   
 

   

   

 

   

   170 B.C. Buckley et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

skills – hypothesis generation from working with or observing the model or phenomenon, 
testing that hypothesis, and interpreting the data – are critical to inquiry but difficult to 
assess. 

4 Model-based instruction and assessment with BioLogica 

In the MAC project our learning activities were designed to foster the development of 
students’ mental models of the structures involved in transmission genetics and their role 
in supporting the inheritance of traits from one generation to the next. Using 
BioLogica™, students interacted with a multi-level hypermodel of genetics [see Figure 2; 
(Horwitz and Christie, 1999, 2000)]. BioLogica™ grew out of an earlier hypermodel 
called GenScope™ (Horwitz et al., 1996). It consists of a suite of models dealing with 
DNA, genes, chromosomes, germ cells, meiosis and fertilisation, organisms and traits, 
pedigrees, and populations. Each model offers a representation of its subject domain as 
well as specific affordances enabling students to effect relevant manipulations. 

Figure 2 The linked, manipulable models at the core of the BioLogica hypermodel (see online 
version for colours) 

 

In the BioLogica hypermodel, manipulations made at any level can affect any other level, 
much the way alterations in a single cell of a spreadsheet can ‘ripple’ through and affect 
other cells. Thus, the alteration of a single nucleotide at the DNA level may produce a 
mutation that causes an alteration of phenotype visible at the organism level. The 
mutation may be transmitted to a gamete during meiosis and may be expressed in an 
offspring through fertilisation. The statistical likelihood of the appearance of the altered 
phenotype can be studied at the pedigree level. If the mutation conveys a selective 
advantage, the frequency of the mutated allele will increase at the population level. 

In the MAC project, we embedded BioLogica within a scripting environment called 
Pedagogica™, which supported the scaffolding and logging of students’ actions (Horwitz 
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and Burke, 2002; Horwitz et al., 2008). Pedagogica provides an authoring tool for 
creating the scripts, using the Javascript language, and also offers runtime support, 
including a communication channel between the script and the underlying model. This 
enables the script to react to runtime events, such as a student running fertilisation to 
create a new organism. The script can then examine the genotype of the new organism 
and react accordingly. 

Using this scripting environment, we developed 12 learning activities for this domain, 
building on the earlier work of the NSF-funded GenScope [NSF#9725524, Horwitz 
Principal Investigator (PI)] and BioLogica [NSF#0087579; Horwitz and Gobert, (PIs)] 
(Horwitz and Barowy, 1994; Horwitz and Christie, 1999, 2000; Horwitz et al., 2008, 
1996; Buckley et al., 2004, 2006). 

4.1 Scaffolding students interactions with BioLogica’s models 

Research has shown that students have difficulty interpreting and reasoning with external 
models and representations and that scaffolding is needed to support students’ learning 
(e.g., Gobert et al., 2004; Gobert and Clement, 1999; Kindfield, 1993, 1994; Larkin, 
1989; Larkin and Simon, 1987; Lowe, 1993). This is consistent with a study of the 
GenScope project in which students who used worksheets to scaffold their interactions 
with the GenScope model outperformed students whose interactions were not scaffolded 
(Hickey et al., 2003). In addition to generic scaffolding such as pre- and post-organisers, 
orienting tasks, and glossary items, MAC activities scaffold learners’ model-based 
learning of the domain by supporting learning in the following ways: 

• Representational scaffolds focus students’ attention on the perceptual cues of the 
representations and make links with other representations such as terminology. 

• Model components acquisition scaffolds support students’ acquisition knowledge 
about one or more aspects of the phenomenon (e.g., spatial, causal, functional, 
temporal). 

• Model components integration scaffolds help students combine model components in 
order to come to a deeper understanding of how they work together. 

• Model based reasoning scaffolds support students in reasoning with their models. 

• Reconstruct, reify and reflect scaffolds require students to use what they have 
learned and apply it to another context or task (Gobert et al., 2004). 

Scaffolding of each type was implemented in the form of questions, tasks, or 
explanations that focused on aspects of model-based learning. Scaffolding questions and 
tasks were transformed into assessments by taking advantage of Pedagogica’s ™ data 
capture capabilities (Horwitz and Burke, 2002) and customisable feedback to students 
based on the data captured. 

4.2 Formative assessments 

The PADI project (Mislevy et al., 2002) aided our conceptualisation of the assessment 
tasks with its focus on the student model (knowledge, skills, and abilities to be assessed), 
task model (tasks to elicit behaviour from which we can infer the state of a student’s 
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model) and evidence model (data that provides evidence from which we can infer the 
state of a student’s model). In MAC this led us to pose the following questions: 

• What mental models and inquiry skills do we want students to develop? 

• What mental models and inquiry skills do we want to be able to assess and provide 
feedback on? 

• What tasks would engage students in progressive model-building and provide data? 

• What data would provide evidence from which we could infer the state of students’ 
models and inquiry skills? 

Our research also built on the analysis conducted when Kindfield and Hickey created the 
pre- and post-tests that measured learning gains in the GenScope project (Hickey et al., 
2003, 1998; Kindfield et al., 1999). We used two of their reasoning dimensions: one that 
distinguished within and between generations (what we would consider reasoning with 
models of meiosis and fertilisation vs. models of inheritance), and a second that 
distinguished between reasoning from cause to effect vs. effect to cause, which in turn 
builds on the work of Stewart et al. (Stewart and Hafner, 1991; Stewart et al., 1992). We 
found the second dimension particularly helpful in analysing the tasks presented to 
students in the MAC learning activities. 

We use three tasks from BioLogica’s Monohybrid activity to illustrate. Monohybrid is 
a central instructional activity in the biology sequence. It is the fourth activity out of 12 
and was designed to help students integrate their models of meiosis and fertilisation 
(developed in the first two activities and assessed in activity three) into a model of 
inheritance. It introduces students to the pedigree level and the interactive Punnett  
square – features of BioLogica that combine visual representations with powerful 
domain-specific tools that support reasoning and inference-making. The activity 
concludes with four tasks that develop and assess students’ skills at using these tools as 
well as their mental models of inheritance. We discuss the last three of these tasks in 
detail below. 
Table 1 Comparison of exemplars from BioLogica 

Task name Task description Purpose Inquiry skills Reasoning 
required 

Task 2 – 
Predict 

Predict offspring of  
two-legged dragons and 
test prediction. 

Diagnose common 
misconception. 

Using Punnett 
square and pedigree

Cause to 
effect, two 
generations 

Task 3 – 
Produce 

Modify parental 
genotypes such that all 
offspring have two legs. 

Assess model of 
meiosis, fertilisation, 
inheritance. 

Using Punnett 
square and pedigree

Effect to 
cause, two 
generations 

Task 4 – 
Skip 

Determine parental 
genotypes that result in 
traits appearing to skip a 
generation. 

Assess model of 
meiosis, fertilisation, 
inheritance 

Design experiment, 
interpret data, 
conduct experiment.

Effect to 
cause, three 
generations 

As shown in Table 1, the three structured and scaffolded instructional tasks focus on the 
same content and use the same tools, but they require and elicit different reasoning. Task 
2 – Predict guides students’ investigation of the distribution of traits among the offspring 
of two-legged parents. It requires that students reason from cause to effect using their 
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models of inheritance of the Legs characteristic in the model dragon species. To scaffold 
their reasoning, BioLogica steps them through creating and using a Punnett square. In 
contrast, Task 3 – Produce requires students to reason from effect to cause by asking, 
what parental genotypes would result in all the offspring having two legs? Students must 
set the genotypes of the parents, breed them, and check the result. Task 4 – Skip is an 
unscaffolded transfer task that asks the students to demonstrate the genetic mechanism 
that causes traits to appear to skip a generation. To do this, students must reason in both 
directions over three generations. All of these monohybrid tasks have fixed initial states 
and correct answers, which makes it straightforward to monitor students’ inquiry 
processes. 

4.2.1 Task interface and data capture 

To illustrate the task interface and the data collected when students are working on 
monohybrid learning activities, we describe Task 2 – Predict. 

In Figure 3, the sequence of screen shots shows the steps students must take to check 
their prediction. The first screen presents the task; the pedigree tools have been disabled 
and are not yet usable by the student in this stage of the task. After they make their 
prediction, students must complete the Punnett square. They can, but are not prompted to, 
use the Chromosome tool to examine the chromosomes of the parents, then fill in the 
alleles of the parents and the offspring. BioLogica checks to see if they did so correctly 
and provides appropriate feedback. For instance, if they filled in the parental alleles 
incorrectly but did not examine the parents’ chromosomes, the computer would suggest 
that they check the chromosomes and try again. Students were allowed three attempts 
before BioLogica presented them with a correctly completed Punnett square. Once they 
had passed that stage, either on their own or with assistance, they were asked to select 
those cells in the Punnett square that represent 2-legged offspring. They were allowed an 
unlimited number of attempts with feedback until they did this correctly. They were then 
asked to predict, based on their observation of the Punnett square with some cells 
highlighted, what fraction of the offspring would have two legs. Finally, students were 
asked to breed the parents using the Cross tool and to check the result against their 
predictions. 

As described above, we were able to log students’ actions as they worked on inquiry 
tasks of this kind. That function, though non-trivial from a technology standpoint, was 
straightforward to implement. The hard part was the analysis of the data collected. In the 
next section we describe what went into the log files and how we used that data to make 
inferences concerning students’ inquiry skills and understanding of content, and to 
provide appropriate feedback to them. 

The MAC activities were created with objects that automatically logged the same 
types of data each time they were used. For example, each time a student uses the  
Cross tool that action is logged. The log includes the time when the cross occurred  
as well as the genotype and generation number of each parent and the number of 
offspring produced. Data of this kind can be used to trigger feedback to the student as 
described above (e.g., for students who did not use the chromosome tool before 
completing their Punnett square). Of greater import for this paper, the structured log files 
that were generated by these self-logging objects captured data to be used for offline 
analysis. 
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Figure 3 Sequence of steps in Task 2 – Predict (see online version for colours) 

 

The first screen presents the task; the 
tools of the pedigree are not usable 
yet. Students make a prediction by 
answering a survey question. The 
correct answer is all three. 

 

After students make their prediction, 
they must complete the Punnett 
square. They may examine the 
chromosomes of the parents if they 
choose, then fill in the alleles of the 
parents and the offspring. Students 
are given three attempts before 
BioLogica presents them with a 
correctly completed Punnett square. 

 

Students select cells corresponding 
to 2-legged offspring. They are 
given unlimited attempts with 
feedback until they obtain the 
correct answer. Students are then 
asked to predict what percentage of 
the offspring will have two legs 
based on the Punnett square. 

 

Finally, students breed the parents 
using the cross tool of the pedigree 
and check their results against their 
predictions. 
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In order to provide appropriate feedback to students and to conduct MAC research we 
had to be sure that the data from which we were generating inferences and conclusions 
were accurate traces of students’ actions. We conducted a series of verification and 
reduction steps, beginning with action-by-action comparison of log files to video of 
computer screens taped as students used learning activities (Buckley et al., 2004). When 
omissions or duplications were discovered, we revised the relevant script and tested it 
again. Because we were unsure what data would be needed, we erred on the side of 
capturing as much data as possible. 

After we were certain that the log files accurately captured student actions, including 
their answers to embedded questions, we began the process of reducing them to forms 
and formats from which we could develop algorithms for analysing student performance. 
Each student session generated hundreds of pages of raw log files, which would have 
been intractable were it not for the XML tags used to structure the output. MAC’s  
data-mining tools enabled us to extract from the log files database those that were 
relevant to a particular class of students, a particular activity, or a particular student and 
then generate a variety of reports from any given log file at different levels of detail. 

Figure 4 diagrams the flow of data from raw log files to statistical records. 

Figure 4 Overview of data processing during verification and reduction 

 

The reduction from raw XML to concise reports preserved all the detail existing in the 
raw log, but formatted it for human examination. Table 2 provides an example of each. 

Concise reports provide a time-stamped record of a student’s actions and the data 
associated with those actions. As shown in Table 2, at 13:23:10 while observing the 
wings pedigree, this student crossed two dragons producing 40 offspring. We can read 
the genotypes of the parents for all traits and observe that they are the first pair of 
dragons (generation 0) for this pedigree. With the concise report we can determine what 
the students did before and after this action and how they answered questions. 

If our objectives had been restricted to using this technology in case study research 
we could have stopped with the concise report. However for scalability and statistical 
analyses, we needed to summarise each student’s performance in a format that could be 
examined in spreadsheet form and imported into a statistical analysis program. Thus, all 
subsequent data reduction involved data analysis as well. This required iterative cycles of 
human coding and analysis, creation of algorithms for machine coding, and verification 
of machine coding, followed again by human analysis (Buckley et al., 2006). We provide 
some detail about these iterations below. 
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Table 2 Comparison of raw XML log and concise report formats 

Format and features Example of data for one cross 
Raw XML log 

• Hundreds or pages 

• Not easily read by 
humans 

Characteristic is being observed: trait: wings 
  </message> 
 </action> 
 <action priority=“middle”> 
  <date> 2005.02.15.13.23.10&nbsp; 02/15/05 | 13:23:10 </date> 
  <message> 
  Genotype of mother: Hh, SS, ww, Ll, Tt, pp, Ff, Aa, BB 
  </message> 
 </action> 
 <action priority=“middle”> 
  <date> 2005.02.15.13.23.10 &nbsp; 02/15/05 | 13:23:10 </date> 
  <message> 
  Genotype of father: Hh, SS, WW, Ll, Tt, p, F, a, B 
  </message> 
 </action> 
 <action priority=“middle”> 
  <date> 2005.02.15.13.23.10 &nbsp; 02/15/05 | 13:23:10 </date> 
  <message> 
  Generation of mother: 0 

   </message> 
 </action> 
 <action priority=“middle”> 
  <date> 2005.02.15.13.23.10 &nbsp; 02/15/05 | 13:23:10 </date> 
  <message> 
   Generation of father: 0 
  </message> 
 </action> 
 <action priority=“middle”> 
  <date> 2005.02.15.13.23.10 &nbsp; 02/15/05 | 13:23:10 </date> 
  <message> 
  number of offspring: 40 
  </message> 
 </action> 

Concise report 
• Chronological record of student actions and answers 
• Readable by humans 

Elapsed 
time 

Interval 
(sec) 

Action Trait.node 
question ID

Mother’s 
genotype/
student 

response

Generation/
score 

Father’s 
genotype/
student 

response 

Generation/ 
score 

# 
offspring 

13:23:10  Cross wings HH, 
SS,ww, 

Ll,Tt, pp, 
Ff, Aa, BB

0 HH, SS, 
WW, Lt, 

Tt, p, F, a, 
B 

0 40 
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A group of five researchers began by individually reading a complete set of log files from 
one randomly-selected student to identify those actions critical to successful completion 
of various tasks. From this, we developed the initial specifications for data extraction, 
reduction, and further analysis. For each activity, specifications were created to transform 
the chronological concise report into a record that summarised the students’ actions using 
variables such as the amount of time taken or the number of attempts needed to complete 
the task, whether the student was successful, what input variables, tools, or other 
resources (e.g., Punnett squares) the student used. To verify that the summary records 
were accurate, we compared them to their corresponding concise reports for a selected 
subset of records. This process often uncovered unexpected student actions not 
anticipated in our original specifications. In these cases we revised the summary report 
generator and tested it with a different set of log files. Specifications for producing the 
statistical record had to include algorithms or rubrics for characterising and evaluating 
student performances. These are described in more detail when we examine each task. 
Because some students required more than one class period to complete an activity, we 
also specified how to aggregate multiple summary records for a student into a single 
statistical record. 

The summary and statistical record formats resulting from this process are described 
and illustrated in Table 3. 

Table 3 Comparison of summary and statistical record formats 

Summary record Statistical record 

• One record per log file 

• Includes autoscoring 

• Basis for teacher reports 

• One record per student per activity 

• Aggregates student use of an activity 

• Concatenates answers and aggregates 
autoscoring 

Used for statistical analysis 

Student
 ID 

Class 
ID 

Date Total 
duration 

(min) 

T4 
time 

Success Q42A Tries Crosses T4 
cat

F1 
crosses

Cross Chromo Snip 
1 

15021 5174 Tue 
Feb 15 
12:52:

32 
CST 
2005 

34.2 11.3 1 I 3 WW x Ww, 
ww x Ww, 
ww x WW

8 1 4 11 12 

 

As Table 3 shows, we captured how long a student was involved in a session and in a 
particular task (Task 4 in this case). In this example, Student 15021 successfully 
completed the task, but required three tries. Based on the crosses listed, the student’s 
performance was assigned to category B1 (successful in 2–3 tries with no repeated 
crosses). The student made one cross of the second generation (F1), used the cross tool 
four times, examined chromosomes 11 times, snipped 12 individuals and two families 
from the pedigree (to clear the way for another attempt), read the genome chart once for  
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four seconds, did not use the Punnett square tool, and viewed the task description for a 
total of 95 seconds. If the student had worked on this task in more than one session, the 
data would have been summed in the case of times and tries, concatenated in the case of 
crosses, and characterised on the basis of all the data. Our goal was not only to 
characterise students’ performances, but also to capture more data about their learning 
experiences and inquiry processes. 

4.3 Analysis of student actions during problem-solving and inquiry 

Autoscoring students’ responses to multiple-choice questions was straightforward, once 
the correct answer was specified. On the other hand, analysing students’ actions during 
problem-solving and inquiry was much more complex and revealed significant 
differences in inquiry strategies employed by different students. In our early observations 
of students and perusals of concise reports, we observed that some students were 
haphazard and unfocused as they tried to accomplish tasks; others were systematic and 
mindful (Gobert, 1994, 1999; Thorndyke and Stasz, 1980). For example, we found that 
some students bred the same two organisms over and over, evidently in the hope that they 
would eventually, by random chance, achieve the distribution of offspring traits they 
sought. These students appeared to have understood that there is a random component to 
each meiotic and fertilisation event, but had failed to understand the statistically 
predictable nature of characteristics of offspring produced by the same parents. Faced 
with the same task, other students, by their unprompted use of the chromosome tool, 
demonstrated that they were spontaneously reasoning at both phenotypic and genotypic 
levels. 

We observed situations in which students succeeded at a task in one try, apparently 
because they reasoned with their mental models and did what needed to be done. On the 
other hand, if students demonstrated flawed mental models or poor reasoning abilities, we 
expected that the use of a systematic inquiry strategy might help them accomplish the 
task, whereas lack of systematicity was likely to hamper problem-solving and learning 
from inquiry. With this in mind, we set out to develop algorithms for detecting these 
different strategies. 

Taking each monohybrid task in turn, we now describe in detail how we analysed the 
log file data to evaluate students’ procedural, schematic, and strategic knowledge. 

4.3.1 Task 2 – Predict: what legs phenotypes will the offspring of a pair of  
2-legged parents have? 

Recall that the Task 2 – Predict required students to predict the phenotypes of the 
offspring of a pair of 2-legged dragons, complete a Punnett square to help them reason 
about the offspring, select offspring genotypes that produce 2-legged dragons, and 
estimate the proportions of offspring before breeding the 2-legged dragons and checking 
the results against their predictions. 

• Evidence. Table 4 summarises the data captured during Task 2 – Predict and the 
scoring rubric used to process the data. 
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Table 4 Task evidence for Task 2 – Predict 

Task component Data captured Scoring rubric 

Prediction of offspring 
phenotypes 

Check boxes for no legs, 2 
legs, 4 legs 

1 point if all three boxes 
checked 

Punnett square completion Contents (alleles in each cell) 
Number of attempts (max = 3) 

2 points if completed 
correctly the first time, 1 
point if completed in 2–3 
tries 

Punnett square selection Alleles of selected cells 
Number of attempts 
(unlimited) 

2 points if correct on first 
attempt, 1 point if correct in 
2–3 tries, 0 if more than 3 
tries. 

Estimated number of 
offspring with two legs 

Multiple choice 1 point if correct 

• Analysis. Task 2 – Predict provides fine-grained evidence of students’ procedural 
knowledge as demonstrated by completing and interpreting the Punnett square. It 
also provides evidence of students’ model of inheritance of the Legs characteristic 
(schematic knowledge) as demonstrated by the initial prediction and by the selection 
of the Punnett square cells that represent 2-legged offspring. Responses to the initial 
prediction also enabled us to identify the approximately 10% of the students who 
held the naïve conception that 2-legged parents produce only 2-legged offspring. 

• Findings. As shown in Table 5, 78% of the students completed the Punnett square 
correctly the first time. If they hadn’t done so, students were given a correct Punnett 
square and asked to select the squares with the correct allele combinations. 76% of 
the students succeeded the first time. There was no limit to tries, which frustrated 
some students, because they could not proceed to the probability question of 
approximately how many offspring will have two legs. When they finally succeeded 
in selecting the cells with genotypes for 2-legged offspring in the Punnett square, 
88% were able to estimate the proportion of 2-legged offspring. Their scores for each 
step of the process were totalled to create the T2score (max = 6) for statistical 
comparisons, but the disaggregated scores for the task are part of the summary and 
statistical records and could be used to provide diagnostic information to teachers 
and students. The distribution of scores is shown in Table 5. 

Table 5 Distribution of student scores for each step of task (280 students, 2005–2006 data) 

Score Prediction 
Complete 
Punnett  
square 

Select Punnett 
square cells 

Estimate 
offspring 

2 n/a 219 214 n/a 
1 145 17 44 247 
0 135 44 22 33 
% students 
correct first time 0.52 0.78 0.76 0.88 
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We infer from these results that while roughly half of the students had inadequate models 
of Legs inheritance as shown by their predictions, most of the students had mastered the 
procedural skills for using Punnett squares to predict probable offspring and 
demonstrated that they could reason from cause to effect when scaffolded. Reasoning 
from effect to cause is a more challenging problem (Stewart and Hafner, 1991, 1994) as 
we will see in the following tasks. 

4.3.2 Task 3 – Produce: can a pair of parents have only 2-legged offspring? 

Before we give students access to any pedigree tools shown in Figure 5, we ask, ‘Is it 
possible for 2 parents to produce only 2-legged offspring?’ and ‘What would their 
genotypes have to be?’ We give them a pair of 4-legged dragons and ask them to produce 
only 2-legged offspring. 

Figure 5 Task 3 – Produce interface (see online version for colours) 

 

• Evidence. Table 6 summarises the evidence provided by Task 3 – Produce, organised 
by tool use. It shows the data captured for each tool use and the variables calculated 
from tool usage for the entire task. Success is indicated by the correct parental cross 
(LL x ll). 

• Analysis. We expect this task to be more difficult than Task 2 – Predict because it 
requires students to reason from effect to cause. It requires that they use the 
chromosome tool to change the alleles of one parent to recessive ‘l’ alleles, then 
breed them using cross tool. Students also have access to the Punnett square pad and 
the dragon genome chart at bottom left. Knowing how to use the tools demonstrates 
procedural knowledge, while reasoning with model of legs inheritance to determine 
what the parental alleles should be is evidence of schematic knowledge. This task 
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may also elicit strategic knowledge if the student is not successful on the first 
attempt. The student must then evaluate the data and determine what is needed to 
succeed. 

• Findings. Since Task 3 – Produce and Task 4 – Skip employ similar analyses, we 
will present Task 3 – Produce findings with those of Task 4 – Skip. 

Table 6 Task evidence and processing for Task 3 – Produce 

Time-stamped tool usage Data captured Variables calculated for the 
summary record 

Cross tool use Genotype, gender, generation of 
parents, number of offspring 

List of all crosses made 
How many crosses made 
How many repeated crosses 
Successful cross (LL x ll) 

Chromosome tool use Genotype, gender, generation of 
inspected dragon 

Times used 

Punnett square use Contents of Punnett square Times used 
Dragon genome chart Time between open and close Total time open 

4.3.3 Task 4 – Skip: create a 3-generation pedigree that demonstrates why traits 
appear to skip a generation 

As shown in Figure 6, we ask students to create a cross between two dragons that 
demonstrates how traits appear to skip a generation. Students must add dragons, select a 
characteristic (horn, wings, or tail) for which the inheritance pattern is simple dominance 
(as opposed to legs, which are inherited as an incompletely dominant characteristic), 
change the alleles so that one parent is homozygous dominant and the other is 
homozygous recessive, cross them and cross a pair of the F1 generation. We then ask 
them to explain how they did it. 

• Evidence. Log files captured the same kinds of data shown in Table 6 for Task 3 – 
Produce. In the summary record for Task 4 – Skip, success is indicated if the student 
made the correct parental cross (DD x rr) followed by a cross of any two offspring. 

• Analysis. The task requires model-based reasoning between generations in both 
forward and backward directions. Two heterozygous parents (cause) will express the 
dominant trait but will produce offspring with both traits (effect). To get two 
heterozygous parents (effect), the original pair must be homozygous; one with the 
dominant trait, the other with the recessive trait (cause). Students must extend their 
reasoning to encompass a third generation to successfully accomplish Task 4. It is 
also a transfer task in two respects. Because it involves traits that are examples of 
simple dominance models of inheritance, it requires transfer to a different model of 
inheritance. The first step in accomplishing the task is identical to Task 3’s 
successful solution, so students have an opportunity to transfer procedural 
knowledge. If this step is completed successfully, then the third generation 
automatically follows when any two offspring are crossed. As in Task 3 – Produce, 
using the tools is evidence of procedural knowledge while reasoning with one’ 
model is evidence of schematic knowledge. This task may also elicit strategic 
knowledge if the student is not successful on the first attempt. 
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Figure 6 Task 4 – Skip interface screens (see online version for colours) 

 

 

4.3.4 Scoring Task 3 – Produce and Task 4 – Skip 

Determining if a student succeeded was straightforward for Task 3 – Produce and  
Task 4 – Skip: if they made the correct cross or two, they must have changed the alleles  
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appropriately. Characterising their inquiry skills is harder. After extensive examination  
of the concise reports for a variety of students and much debate, we identified a  
simple measure of systematicity – that is, no repeated crosses. Because the pedigree 
displays the cumulative results of all crosses, repeating a particular cross yields no 
additional useful data. Therefore, we deemed accomplishing the task without any 
repeated crosses systematic. We arrived at a 6-point ordinal scale to rank the students’ 
performances on both tasks (see Table 7). At each end of the scale were the students  
who succeeded or failed with just one attempt. In between were the students who were 
either successful or not and systematic or not. Based on our hypothesis that students who 
were systematic were more likely to be reasoning with their models, we ranked students 
who were systematic higher than those who were haphazard and favoured success over 
failure. 

4.3.5 Findings Task 3 – Produce and Task 4 – Skip 

When we examine the distribution of students among the ordinal categories for  
Task 3 – Produce and Task 4 – Skip, we see, as predicted, that Task 4 – Skip is more 
difficult than Task 3 – Produce: the percentage of students who succeeded on the first try 
for Task 3 – Produce is over twice that for Task 4 – Skip. Notice also the reproducible 
results for 2005 and 2006. 

Table 7 Criteria for auto-coding student performance on Task 3 – Produce and Task 4 – Skip 
and distribution of students 

Task 3 (%)  Task 4 (%) 
Code Success Tries Repeated 

crosses Description 
2005 2006  2005 2006 

6 1 = 1  Successful, 
1st try 41 47  19 22 

5 1 > 1 no repeated 
crosses 

Systematic 29 29  28 29 

4 1 > 1 repeated 
crosses 

Haphazard 21 16  7 7 

3 0 > 1 no repeated 
crosses 

Systematic 2 1  13 12 

2 0 > 1 repeated 
crosses 

Haphazard 6 6  20 18 

1 0 = 1  Unsuccessful, 
1 try < 1 1  13 11 

    Total N 405 281  353 246 

5 Monohybrid findings 

Based on data from students who used the monohybrid activity in 2005–2006 and took 
both the pre- and post-tests, we found all three tasks were moderately and significantly 
correlated with total pre-test scores and with each other. 
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Table 8 Correlations among total pre-test scores and task scores 

 Total score 
pre-test Task 2 – Predict Task 3 – Produce Task 4 – Skip 

Total score pre-test 1.00 - - - 

Task 2 – Predict 0.29* 1.00 - - 

Task 3 – Produce 0.29* 0.56* 1.00 - 

Task 4 – Skip 0.24* 0.34* 0.31* 1.00 

Note: * Correlation is significant at the 0.01 level (2-tailed). 

All three task scores were also significant predictors of students’ post-test scores, holding 
pre-test scores constant. As the three tasks were correlated, to avoid colinearity among 
the measures, we ran individual regressions of post-test scores on task performance, 
holding pre-test scores constant. Pre-test scores and task scores were entered as separate 
blocks; block 1 included prior achievement only and block 2 included prior achievement 
and a single task score. This approach allowed us to examine the percentage of variance 
in the post-test scores explained by a single task score over and above the variance 
explained by prior achievement. The results of the regression analyses in Table 9 show 
that each task score is a significant predictor of the post-test scores after controlling for 
prior knowledge. 

Table 9 Summary of individual regressions of task performance on post-test, holding pre-test 
constant 

Total post-test acores  
 

β t Sig. Total R2 
Model 1     
Block 1 – prior achievement only    
 Total pre-test scores 0.47 9.43 < .001 21.90% 
Block 2 – prior achievement and task scores  
 Total pre-test scores 0.36 7.60 < .001  
Task 2 – Predict scores 0.39 8.13 < .001 35.30% 
Model 2     
Block 1 – prior achievement only    
 Total pre-test scores 0.47 9.50 < .001 22.10% 
Block 2 – prior achievement and task scores  
 Total pre-test scores 0.38 7.72 < .001  
Task 3 – Produce scores 0.33 6.89 < .001 32.10% 
Model 3     
Block 1 – prior achievement only    
 Total pre-test scores 0.47 8.86 < .001 21.80% 
Block 2 – prior achievement and task scores   
 Total pre-test scores 0.41 7.81 < .001  
Task 4 – Skip scores 0.24 4.53 < .001 27.00% 
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Task 2 – Predict explained the greatest variance in the post-test scores after controlling 
for pre-test scores (13.40%). Task 3 – Produce explained 10% of the variance in the  
post-test scores after controlling for pre-test scores. Task 4 – Skip explained only 5.2% of 
the variance in the post-test scores after controlling for pre-test scores. 

The results of the regression models suggest that being able to use the Punnett square 
to support reasoning and learning may be essential to the development, not only of 
students’ procedural knowledge, but also to their schematic knowledge and mental 
models. This is consistent with Kindfield’s belief that students’ understanding of genetics 
and of domain-specific representations co-evolve during learning (Kindfield, 1993, 
1994). It also supports our belief that the Punnett square is a powerful tool and 
representation for helping students learn models of inheritance through model-based 
reasoning. 

6 Discussion 

Over the five years of the MAC project we developed a technology platform, curricular 
and assessment materials, and a reporting system that enabled us to monitor, assess, and 
respond to students’ actions. This paper has focused on just three out of the many tasks 
that comprise the learning activities of the biology strand of the project. In it, we have 
demonstrated how we were able to assess students’ inquiry skills and problem-solving 
approaches as well as their naïve conceptions and mental models of monohybrid 
inheritance. 

Assessments in the MAC project served three purposes: 

1 to provide data concerning overall learning gains 

2 to guide immediate feedback to students 

3 to provide fine-grained analysis of students’ reasoning and inquiry skills in order to 
better understand how inquiry supports learning. 

This paper focuses primarily on how data that is both fine-grained and large-scale can be 
analysed in order to get rich evidence of students’ reasoning and inquiry skills in this 
domain. 

It has become routine to warn inexperienced researchers not to attempt to collect too 
much data for fear that the analysis will prove time-consuming and ultimately ineffective. 
The much dreaded ‘dribble file’ that reports every action of the student is often sited as a 
trap for the unwary. The MAC data came close to being just such a dribble file, yet with 
an appropriate mix of human ingenuity, hard work, and the use of sophisticated tools for 
data-mining, we were able to uncover a wealth of useful information from it. This paper 
has described the methods that enabled us to process approximately 1.5 gigabytes of 
extremely complex data that include performance parameters, embedded assessments, 
surveys, and pre- and post-tests. The log files captured data that documented how nearly 
12,000 students in over 50 schools, taught by 127 teachers, used MAC learning activities 
in three domains over a period of three years. 

We have described the affordances of three BioLogica tasks for assessing students’ 
understanding and reasoning. These tasks are located at a critical point in the progression 
of model-based learning activities used to teach genetics. In the course of determining 
what students learn with our activities we investigated novel ways of assessing their 
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understanding and reasoning by capturing and analysing their actions as they solved 
problems with BioLogica hypermodels. Our findings have implications not only for 
formative, real-time classroom assessment of students’ understanding, but also for  
large-scale, high-stakes testing. 

We have demonstrated the ability not only to assess students’ ability to complete 
inquiry tasks successfully, but also to identify non-productive strategies adopted by some 
students, as well as systematic inquiry and problem-solving approaches used by others. 
We have correlated student performances on these three tasks with learning gains. 

This project and paper has described a rigorous method for collecting fine-grained 
data on a very large scale and analysing these data using computer algorithms. Our 
procedures for data reduction and methodology for analysis are informed by 
theoretically-motivated assessment frameworks (Shavelson et al., 2002; Mislevy, 2002). 
Thus, the work reported on occupies a fruitful middle ground, merging automated data 
acquisition and data-mining techniques suitable for very large scale use with theoretical 
frameworks for assessment based on much finer-grained experiments. 

6.1 Limitations 

Our research methodology had unavoidable limitations. For instance, the variance in 
students’ manipulation of our computer-based models may be explained both by a 
corresponding variance in their mental models and inquiry skills and by differences in 
their familiarity with the software itself. We attempted to minimise this effect by 
providing, particularly in the early activities, scaffolding designed to introduce students 
to the software tools. Nevertheless we cannot be certain that all of our students became 
equally adept at using the software. Moreover, many of our participating teachers 
encouraged cooperative learning styles in their classrooms, which resulted in substantial 
collaboration between students as they worked on our learning activities. Our instructions 
to the teachers were not to allow such ‘cross talk’ on the pre- and post-tests, which 
therefore can be taken as reflecting the work of individual students, but the collaborative 
atmosphere of the classroom necessarily introduces some uncertainty into our analysis of 
students’ manipulations of the computer model. For example, did students succeed on 
their first attempt because their neighbour told them what to do? 

6.2 Using log files for formative assessment 

There are two aspects to this topic: how to create useful log files and how to use the 
reports that can be generated from them to guide curricular decisions in the classroom. 
Theory-driven assessments are important to creating useful log files. We have explored 
three tasks that assess different aspects of model-based learning and inquiry, different 
mixtures of knowledge types, and different kinds of schematic and strategic reasoning. 
The tasks must be matched to the knowledge about the student one wishes to acquire and 
the nature of the evidence that will support sustainable inferences. It many sometimes 
prove necessary, for example, to constrain what students can do to accomplish a task, as 
we discovered when we observed several students who tried to create the desired 
pedigree of Task 4 – Skip by carefully snipping out all the offspring that had the 
undesired traits! 

What data you decide to capture is crucial to gathering the evidence you need. You 
really don’t need every keystroke or mouse click, but if in doubt, don’t leave it out. It’s 
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relatively easy to program the computer to ignore certain data, but impossible to fill it in 
if it was never collected. We have also found that time on task, although sometimes 
unreliable for a variety of reasons, can help to distinguish between productive and 
unproductive behaviour. 

Our model-based assessments provide formative data that, if reported in a timely 
fashion, could be used by teachers to inform curricular or instructional decisions. On the 
MAC project we were unable to take full advantage of this feature because we did not yet 
know how to analyse the data; we didn’t learn that until the research phase of the project 
was completed2. Nevertheless, our research clearly points the way toward the creation of 
useful formative assessments based on real-time analysis of students’ actions during 
problem-solving and inquiry activities. Such assessments can be useful both as  
short-cycle formative assessments, used to mediate students’ interactions with the 
computer, and as input to classroom teachers both during and after class. Our research 
contributes to the knowledge base necessary to develop such formative assessments. 
Indeed, the [Logging Opportunities in Online Programs for Science (LOOPS), NSF # 
0903243] and Calipers projects [NSF # 0454772 and # 0741729; Quellmalz, (PI)] among 
others are already building on our research. Eventually, one can hope, even the large-
scale, high-stake assessments that dominate so much of the education enterprise may 
come to rely on the same interactive approach (Quellmalz and Pelligrino, 2009). 
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time-stamped information regarding students’ actions. Missing, however, from the teacher 
reports were the automated analyses of the kind we have described in this paper, since the 
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